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Abstract

This paper develops methods for the exact computation of the

distribution of the maximum flow and related quantities in a

planar network with independent and exponentially distributed arc

capacities. A continuous time Markov chain (CTMC) with upper

triangular rate matrix and single absorbing state is constructed

with the property that the time until absorption in this

absorbing state is equal to the value of the maximum flow in the

network. Recursive algorithms are developed for computing the

distribution and moments of the maximum flow. Algorithms are

also presented to compute the probability that a given cut is the

minimum capacity cut in the network. The algorithms are

efficient and computationally stable. Distribution of the

maximum flow, given a minimum cut, is studied.
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1. Introduction

In this paper we investigate directed planar stochastic

networks and consider the problem of computing the probability

distribution of the maximum flow that can be sent from the source

-. s to the sink t without violating the capacity constraints of the

arcs. Among several situations where the maximum flow problem in

stochastic networks is encountered in practice, we describe two.

First, consider a network with deterministic arc capacities.

Assume that the existing flow in the network is random, thus the

excess capacity available on each are is random. We are

interested in determining how much additional flow can be sent

from the source to the sink in this network. Thus we are faced

with the maximum flow problem in a stochastic network where the

arc capacities are the random excess capacities in the original

network. Such probabilistic capacitated networks may arise in

communication or transportation applications (see Frank and

Frisch £1971 ])

Second, consider a system of components which can be

represented by a network. Each arc of the network represents a

component in the system. Each component can be either "up" or

"down". The system as a whole is "up" if and only if there is a

path of "up" components from the source to the sink in the

network representation of the system. If we define the capacity

of an arc to be 0 or 1 depending upon whether the component

represented by the arc is "down" or "up" we get a stochastic

network. The probability that the system is "up" is the

probability that the maximum flow in the stochastic network is

nonzero. In fact the actual value of the maximum flow can be

taken to indicate the "health" of the system: the higher the

maximum flow, the "healthier" the system.

......... •. ........ ..... ........ , . ...
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When we consider multi-state multi-component systems, i.e.

systems where the components as well as the system may exist in

more than two states of degradation, the maximum flow concept

provides a natural extension of the binary case. We construct a

stochastic network where the rapacity of an arc is a monotonic

function of the state of the component it represents. The state

of the system is then defined as the maximum flow from the source

to the sink in this network.

The value of the maximum flow in a stochastic network is a

random variable. We are interested in its distribution, moments

and its dependence on the network characteristics. Frank and

Frisch [1971] have offered a formulation utilizing transforms.

The procedures, though conceptually simple, are impractical from

the computational point of view, even in the special case of

normally distributed arc capacities. Evans [1976] has addressed

the problem for a network with integer-valued, discretely

distributed arc capacities.

Comprehensive procedures have been developed for the maximum

flow problem when arc capacities are deterministic. Ford and

Fulkerson [1962] developed a procedure and showed that the value

of the maximum flow from the source s to the sink t is equal to

the capacity of the minimum capacity (s,t) cut in the network.

When the network is (s,t) planar, i.e., it has a planar graph

representation such that an arc from t to s can be drawn without

violating planarity, one can draw its dual network. The shortest

path problem for this dual network can then be solved by using

one of" the standard shortest path algorithms (see Dijkstra

[1959], Elmaghraby [1977)). The duality theory asserts that the

-', . ,- -" -" -" - ., . ." .- ,- .- , ,- ,- ,- .. ., .- . -. ..... "'.* ..: " * *." -. " - . . 5.- " . '.i.'-...' . .* 5 * * .% . . . . ... . '- -



length of the shortest path in the dual network is equal to the

capacity of the minimum capacity cut in the original network, and

thus provides the value of the maximum flow. Alternate

algorithms for the maximum flow in (s,t) planar networks, which -

avoid constructing the dual, are described in Itai and Shiloach

P 97 91.

In this paper, we consider the maximum flow problem in (st)

planar networks where arc capacities are independent

exponentially distributed random variables. When the capacities

are not exponentially distributed one can approximate their

actual distributions by phase type distributions. The methods

developed in this paper can be directly extended to the case when

the arc capacities have phase type distributions. We do not

discuss this extension in this paper since the most significant

contribution of this paper is the construction of the stochastic

processes which facilitate the solution of the maximum flow

problem.

In Section 2 we establish the network terminology related

to (s,t) planar networks. In particular we introduce the

"topmost path first" order on the set of all (s,t) paths in the

network. In Section 3 we present an algorithm for the maximum

flow problem in (s,t) planar networks with deterministic arc

capacities, which is subsequently used in the development of our

algorithms.

In Section 4 we construct a finite state space continuous

time Markov chain (CTMC) with the following property: the time

until absorption in the absorbing state in this Markov chain is

equal to the value of the maximum flow in the network. The state

61 - ° . .* .. Iy , - ..- .-. .° - .- . . . -. . . - ... , . -. +. ...o . . .. .
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space is shown to be the set of (s,t) paths in the network

augmented by an absorbing state. When these paths are ordered P

according to the "topmost path first" order, the rate matrix of

the CTMC becomes upper triangular. This structure yields

computationally simple algorithms to compute the distribution and P.

moments of the maximum flow. These algorithms are described in

Section 5.

In Section 6 we introduce the criticality indicator of a P

minimal (s,t) cut, which takes the value I if the cut is a

minimum capacity cut in the network, and 0 otherwise. The

criticality index of a cut is defined to be the probability that P

the criticality indicator of the cut is 1. We study the joint

distribution of the criticality indicator of a cut and the

maximum flow and develop algorithms to compute the criticality

index of a cut.

In Section 7 we document the computational results using

four networks as examples. The conclusions are presented in -

Section 8.

S[:<i
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2. Planar Networks

Let G = (V,A) be a network with vertex set V, arc set A,

source node s, sink node t, and N paths. It is assumed that G is

(s,t) planar and that one planar representation of G is fixed in

advance.

An arc ecA is incident on a node u if u is the starting or

ending node of e. Let E(u) denote the set of arcs incident on u.

Each arc ecE(u) induces a partial order, on E(u) as follows. Arc

el is said to be before e 2 in the partial order induced by e on

E(u) if el, e 2 cE(u) and el appears before e 2 in a clockwise sweep

around u starting from e.

A path in G is described by the sequence of nodes it visits.

A path is called simple if it does not visit any node more than

once. Let P1  - (vo=s,vl,...,vm=t) and P2-(UO=S,U1,...,Un=t) be

two simple (s,t) paths in G. Assume that an imaginary arc (t,s)

is drawn on the planar representation of G without violating the

planarity. Let v., 1 =t. The path P1 lies above P 2 (or,

equivalently, P 2 lies below P,) if there exists an index r such

that vi=ui for i=1,2,...,r and vr+1 r+ and the arc (vr,vr+)

is before (ur,ur+l) in the partial order induced by (vr.1,vr) on

E(vr)•

The relation "lies above" defines a partial order on the set

of all (s,t) paths in G. Let L be the ordered set of paths

IP 1 ,P 2 ,.•.,PNI such that if Pi lies above Pj then I < J. The

paths in L are said to be in the topmost path first (TPF) order .

An algorithm to list the paths in the TPF order is described

. . . . . . . . . . . . . . . . . . . . .. . . . .. * *'*. *.* * .. - .
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below. It is a modified version of the backtracking algorithm

described in Reed and Tarjan [1975J.

Algorithm to List Paths in TPF Order:

Step 0. Set v..1-t.. .

All nodes unlabelled.

All arcs unscanned.

Step 1. Set i-O, vo-s. Label s.

Step 2. Let e be the first unscanned arc leaving vi that appears

in the clockwise sweep around vi starting from (vij1,v i ) such

that head node of e is unlabelled.

If no such e exists, go to Step 4..

Step 3: Set vi+ I - head node of e, label vi+j. Scan e.

If v, - t, go to Step 5.

else, set i=i+1 and go to Step 2.

Step 4. If i=0, stop. (All paths are listed).

Else, unscan all arcs leaving vi, unlabel v i .

Set i-i-i and go to Step 2.

Step 5. An (st) path of length i+1 is found.
S

List the nodes vo,vl,...,vi.

Unlabel t, set i-i-1 and go to Step 2. 0

Choice of e in Step 2 guarantees that the paths are generated in

the TPF order.

Let P1-(vo=s,vl,...,vm-t) and P2-(Uo=s,u1, .. ,Un-t) be two

simple (s,t) paths in G. The path PI lies completely above P2

(or, equivalently, P 2 lies completely below PI) if vi-uj and vi+ I

. ... ..... ...



4 uj+, implies that (vlvi+l) is before (ujuj+l) in the partial

order Induced by (vt.l,v t ) on E(vi). For each P in L and an arc

e on P, define an alternate path P(e) to be the first path in L

that does not use arc e and lies completely below P. If no such

path exists we say P(e) - *. An algorithm tc construct P(e)

given P and e is described in Itai and Shiloach [1979].

We end this section with an example which illustrates the

concepts defined here. Consider the planar network of six nodes

and nine arcs displayed in Figure 1. Node 1 is the source and

node 5 is the sink. Table I lists the paths in this network

in TPF order. Path (1,3,4,5) lies below path (1,2,3,6,5) but

does not lie completely below. Path (1,3,4,5) lies completely

below path (1,2,3,4,5). The alternate path for path (1,2,4,6,5)

is (1,2,3,4,6,5) if arc e is (2,4). There is no alternate path 77

* for path (1,2,41,6,5) if arc e is (6,5).

. . . .. .. . . .
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3. Maximum Flow in Deterministic Planar Networks

In this section we describe an algorithm to find the maximum

flow from s to t in a planar network. The algorithm is suggested

in Ford and Fulkerson [1956], developed in Berge and

Ghouila-Houri [1962] and its time complexity is reduced to

0( IVI log IVI ) by Itai and Shiloach [1979]. The algorithm is

described below since it is the starting point for our analysis

in the stochastic case.

Let c(e) be the non negative deterministic flow capacity of

arc e. Let f* be the maximum flow that can go from s to t. As

before let L be the list of (s,t) paths in the TPF order. Define

the capacity of a path PeL as

c(P) = min c(e)}. (3.1)
e on P

Maximum Flow Algorithm:

Step 1. Let P be the first path in L. Set f* - 0.

Step 2. f* = f* + c(P)

c(e) = c(e) - c(P) for all ecP.

Step 3. Let P' be the next path in L such that c(P') > 0.

If no such path exists, go to Step 4.

Else, set P + P' and go to Step 2.

Step 4. Stop, f* is the maximum flow.

9

Remark 1. This algorithm is called the "path filling" algorithm,

since it starts with the first path in L and keeps filling them

to capacity until no more path can be found. The proof that this

algorithm produces the maximum flow is given by both Berge and

Ghouila Houri [1962] and Itai and Shiloach [1979].

.....................................~..... ......
. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .
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- Remark 2. In Step 2, let e be that arc on P for which c(P) =

c(e). If this e is unique, then it can be shown that P' is the

alternate path P(e) as defined in Section 2.

* Remark 3 The path filling algorithm works if the paths are used

in TPF (or the reverse of TPF) order. An arbitrary order may not

work, i.e. all the paths may get saturated while the flow is not

maximum.

Remark 4. The TPF order is not defined for a non planar network

In such a case it is possible to construct an example where the

path filling algorithm fails no matter what ordering of paths is

used.

. ....
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4. Maximum Flow in Stochastic Planar Networks

Let G - (V,A) be the (s,t) planar network with source s and

sink t and L be the ordered set of (s,t) paths in G in TPF order.

Let C(e) be a non-negative random variable representing the

capacity of arc e. Let T be the maximum flow that can be sent

from s to t. We are interested in the distribution and moments

of T. To analyze this problem we construct a stochastic process

with a single absorbing state so that the time until absorption

in this state is equal to the maximum flow, T, from s to t.

Visualize the network G as a network of pipelines, with arc

e capable of handling C(e) gallons of flow per unit time.

Suppose that there is a pump at node s that forces fluid into the

network at the rate of t gallons per unit time at time t. Thus

the flow of the pump increases linearly with time. The nodes act

as multiple-valves controlled by a complex mechanism which

operates as follows: At time t = 0, the first path in L, call it

P, is open for the fluid flow; all other paths are blocked. When

this path fills up due to capacity restriction of arc e on P, the

flow is then diverted to the alternate path P(e). This process

continues as long as there is an unfilled alternate path

available. When all paths are filled the pump flow cannot be

increased any further.

Define X(t) to be the path in which flow is increasing at

time t. If at time t the network is saturated, i.e. the flow is

not increasing, X(t) is defined to be *. X(t) represents the

state of the system at time t. Note that the network handles a

flow of t gallons/unit time at time t. From the construction of

...............-* -""' .' -, '.-. * ,m. "-".''- . ............... mll........... . ........... ..



X(t) and the path filling algorithm of Section 3,it is clear

* that

T -min {X(t) - *- (4. 1)

to

*From now on we assume the following:

Al. JC(e), eEA} is a set of independent random variables.

*A2. C(e) is exponentially distributed with parameter

pde)>O (mean 1/- e)

Theorem 1. Under assumptions Al and A2, {X (t) t90I is a CTMC

with state space L Lul*1 and rate matrix Q L(,']

P,P'cL*, where

q(P,P') 11 ~(e) if P'4. P; P,P'EL

e on P: P(e) P

- ~ X (e) If P =P'cL (4.2)-
e on P

= 0 if P

Proof: The fact that IX(t),ta0I is a CTMC follows from

assumptions Al and A2. Now suppose that X(t) = PeL. If the arc

e on P saturates , whi ch happens at r ate (e) th e s tate changes

* to P~e). If P(e) does not exist, the state changes to *. if

*X(t) * it remains *from then on. The equations for q(P,P')

follow from these observations.

*Remark 5. From the construction of jX(t),tZ0} it is obvious that

* the process does not visit the same state twice, since once a

*path is saturated it stays saturated. Hence the rate matrix is

*upper triangular. This structural property is critical in

...............................................
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developing simple algorithms for computing the distribution and

moments of T.

Example. Consider the example network of Figure 1. The state

* space for the CTMC representation for this Markov chain is partly

* given in Table I. (Table I gives L, the state space is L *

* LUlI). The rate matrix for this problem is given in Table II.
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5. Distribution and Moments of Maximum Flow

In this section we develop algorithms to compute the

distribution and moments of the maximum flow. It is possible to .- J

develop two types of algorithms, called backward and forward

algorithms. We present both versions, but we illustrate only the

backward algorithms by means of an example. Also, from now on we

identify the set L with the set f1,2,...,N}, i.e. X(t) - i means

that the state of the system at time t is given by the i-th path -1

in L. The state 0 will be identified by the number N+I. Thus

equation (4.1) becomes

T = min {taO: X(t) - N+ 1 X(O) - I . (5.1)

We are interested in the distribution of maximum flow

F(t) = P(T:5t) (5.2)

and the k-th moment

m(k) - E(Tk). (5.3)

5.1 Distribution of Maximum Flow

Backward Algorithm: Define

Pi(t) - PfX(t) N+1 1 X(O) - i}, 1 < i S N + 1. (5.4)

Then F(t) - P1 (t). The differential equations for pi(t) are

given by

Pi t - p qi P (t) ---

1 i N+1 (5.5)

PI(O) - 6i'N+l

=- .. -.. ,. .. ... .. , -.. '-... ...... '......, -. ','.. '... -
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where 6,j - if I - j , 0 otherwise. Due to the upper

triangular nature of Q, equations (5.5) can be solved in a

backward manner, starting with PN+1(t) - 1 for t Z 0, and

computing PN(t),...,pl(t) -F(t) in that order.

Example. For network 1, equations (5.5) become

P9 (t) = 0,

p;(t) = -( 2 +P 6 + 9 )p 8 (t) + (P2+ 6+P9)9( )

PT(t) - -(P 2 +V5 +P 8 +P 9 )p 7 (t) (5+ 8 )p8 (t) + (P2 P9)P9(t),

(5.6)

P3 (t) - -(u 1 + 4 +P 5 +' 7 )p 3 (t) + P7P4 ( t) + p5p 5 (t) + (' 1 +t 4 p 6 (t),

Ip 2(t) - -( l+j 3+]JB+ 9 )P2 (t) + (1j3+1j8)p5 (t) + Vi1P7(t) + 1j9 p9 (t),

Pl(t) - P-. +133+0 7 )p1 (t) + 7 p 2 (t) + u3 P 3 (t) + iP 6 (t).

Forward Algorithm: Define

p.(t) - P{X(t) = i I X(0) I], 1 j N + 1. (5.7)

Then F(t) -PN+1(t). The differential equations for Pj(t) 5

are given by

p (t) = q

1 S j S N + 1 (5.8)

p ( 0 ) = 6 , .  "

Again since Q is upper triangular, the above equations can be p

solved in a forward manner, starting with p 1 (t) - exp(qllt), t Z 0,

and computing P2 (t),...,PN+I(t) F(t) in that order.

Numerical Evaluation of F(t): Uniformization technique described

in Ross [1983] is used to numerically evaluate F(t). The details

........ ........ "... ...
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of this technique are given in Kulkarni and Adlakha [1984]. Here

we give only the final result. Define

q - max J-q } (5.9)

1 &i&N+1.-.-.

and let

*

q = 6 + q /q,1 S i, j S N + 1 (5.10)
N

Let Q [qijI and let an be the (1,N+1)th element of the nth

power of Q It is easy to see that an's increase to 1 as n .

Then we have

-qt nF(t) - a e- (qt) /n!. (5.11)
n=0 

n

In numerical calculations we choose an E > 0 and an M such that

aM a 1-. Then compute

F (t)= I - (1-a )e t (qt) n/n! (5.12)M nn=O

and

M
Mt--qtn

(t) M - (aM-n)e (qt) /n!. (5.13)n=O

It can be shown easily that FM(t) and FM(t) provide lower and upper

bounds for F(t) within c. It is a straightforward matter to . -

compute an's sequentially. Thus uniformization is a

computationally stable and rapid method of computing F(t).

* * . . * -. ..- |

*........



-16-

5.2 Moments of Maximum Flow

We now describe the backward and forward algorithms to

compute m(k), the k-tth moment of' T.

Backward Algorithm: Define

T' - min JtZO: X(t) - N-11 X(O) -i}, 1 S i S N 1 (5.114)

and

k
M 1(k) - E(T 1), 1 S i S N + 1. (5.15)

As fX(t) tZo1 gets absorbed in the state N + 1 with probability

I, m ( 0) 1 f or 1 S i S N + 1. Also, for k 1, mN+1(k) - 0.

It can be shown that

(k) [ km1i (k-'1) + qim k] 1(5.16)

where q1 = q, q11  We have m(k) m m1 (k). To compute m(k) one

needs to compute mi(r) for r -1,2,...,k; i- N + 1, N,...,2,1 in

that order.

Example. For network 1 equations (5.16) become

m9 (k) -0,

m 8 (k) [km 8 (k-1) + PU6Pm9(]/P2'69'

m 7(k) = km 7(k-1) + (p 5+ 8 )m 8(k) +()j 2 +119)m 9Ck)]/(j 2 +4 5 0 8+P9)

(5.17)

m (k) C km (k-1) + (p +1 ()m (k +im5 k p~ k ~m(~/

Forward Algorithm: Def ine



p -1 7

T-infitaO:X(t) -il IX(0) - 1 (5.18)

where the infimum over an empty set is defined to be + a.Let

I(k) -E(T>4, k?0. (5. 19)

It is possible to have m (0) -PT( <) < 1 for 1 S J S N.

It can be shown that

k kw

i<J r-0 i (5.20)

m (k) - 6 k0 ka0, 1SJSN+l.

These equations are solved recursively in a forward manner. it

Is clear that equations (5.16) can be solved more efficiently

than equations (5.20).

.7 -' -
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6. Joint Performance and Criticality Index

Let YcA be a prespecified (s,t) cut. Assume that Y is a

minimal cut, i.e., no proper subset of Y is a (s,t) cut. Then it

is known that there is a set BcV such that

Y - C(BB)- f(u,v)cA: ucBvci}. (6.1)

Define the capacity of a cut to be the sum of the capacities or

its constituent arcs. Let

I(Y) 1 if Y is minimum capacity (s,t) cut in G

= 0 otherwise. (6.2)

I(Y) is called the criticality indicator of the cut Y. Define

the criticality index of the cut Y as

R(Y) = P(I(Y) = 1). (6.3)

In this section we study the joint distribution of I(Y) and the

maximum flow as well as the criticality index R(Y). The key to

the development of these algorithms is the following

characterization of minimum capacity cut from Ford and Fulkerson

[1962]:

A cut Y = C(B, ) is a minimum capacity (s,t) cut if and

only if the arcs in Y are saturated while the arcs in C(B,B)

are empty when the flow from s to t is maximum.

A (s,t) path in G is called Y-admissible if it intersects Y

in one and only one arc. It is clear that a path is Y-admissible

if and only if it has no arcs from C(B,B). It can be easily

seen that the first and the last paths in L are Y-admissible for

any minimal cut Y. Let L(Y) be the ordered set of Y-admissible

paths obtained by deleting all non Y-admissible paths from L.

. -o."...

. . . . . . . . ... ,"..=. .- .

.. o. ". ./ .-. :... .. . . . . . . . ..-...,.. :..,'..,... " .- ,'.......,- ,'..-.... - .. -,-..,'.". . . . .". . ..-.. ...... .. .... .. ..-. .. ,.--..
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We now modify the pipe filling process described in Section

4 as follows: Consider the following cases when the current

path, say P, fills up due to the capacity restriction of arc e on

(1) eEY, P(e) -

(2) etY, P(e) ,

(3) ecY, P(e) * *, P(e) is Y-admissible,

(4) eiY, P(e) *, P(e) is Y-admissible, YnP - YnP(e),

r (5) etY, P(e) *, P(e) is Y-admissible, YnP * YnP(e),

(6) eiY, P(e) * *, P(e) is not Y-admissible.

It can be shown that the case "ecY, P(e) * *, P(e) is not

Y-admissible" cannot occur if Y is a minimal cut. The original --

pipe filling process described in Section 4 terminates if cases 1

or 2 are encountered. The modified process terminates if' cases

1, 2, 5 or 6 are encountered. If the modified process terminates

due to case 1, it will be called a "good" termination; else it

will be called a "bad" termination. In cases 3 or 4 the process

continues by diverting the flow to the path P(e).

Let Xy(t) represent the path.in which flow is increasing at

time t in the modified process. If the flow is not increasing in

any path at time t, the process must have terminated before t.

If the process ends with a "good" ("bad") termination at time t,

Xy(t) is defined to be *( ') for t Z T. It is clear that as long

as Xy(t)cL, it is in fact in L(Y), since Xy(O) is a Y-admissible

path. Thus {Xy(t),tO1 is a stochastic process with state space

L*(Y) - L Y u , ' .(6.4)" i

The following theorem brings out the significance of the process

ixy(t),tao}.

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . i-

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
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Theorem 2. Let JXy(t),tZO} be the modified pipe filling process

on L*(Y) with Xy(O) - first path in L(Y). Let

T(Y) - min {t O: X y(t) - 01. (6.5)
Then (6.5)

P(T(Y)St) P(I(Y) 1 and capacity of YSt). (6.6)

Proof: We shall show that

lXy(t) , - {I(Y) = 1 and capacity of Y S ti. (6.7)

(->) Suppose Xy(t) = 0. Then, from the construction of the

modified pipe filling process, maximum flow of value S t has been

achieved; no arcs of C(B,B) have been used and the arcs in Y are

full. Then from the characterization of max-flow by min-cut, the

cut Y is the minimum capacity cut and its capacity (which is same

as the maximum flow) is S t. Thus I(Y) = 1 and capacity of Y S t.

(<=) Suppose I(Y) 1 1 and capacity of Y S t. Then from the

characterization of max-flow by min-cut the arcs in C(B,B) are POO

empty, the arcs in Y are saturated and the maximum flow S t.

Hence, Xy(t) must have stayed in L(Y) until It hit * before t.

Thus Xy(t) *.

As 0 is an absorbing state

P(T(Y) S t) = P(Xy(t)= 0). (6.8)

The result now follows from equations (6.7) and (6.8). o

As 0' is also an absorbing state, T(Y) is an incomplete

random variable. In fact

R(Y) = P(I(Y) 1) - P(T(Y) < e). (6.9)

Thus, the criticality index of a cut Y is given by the

probability that the process {Xy(t), tZO} gets absorbed in *.

......................................-...............

. . . . . . . . . . . . . . .. . . . . . . . . . . .
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Note that Theorem 2 is true regardless of the assumptions Al and

A2. If Al and A2 hold, {Xy(t), tZ0} can be shown to be a CTMC as

proved in the following theorem. First, we introduce some

notation.

If Xy(t) - PEL(Y) and arc e on P saturates, a transition

takes place to some other path P'cL(Y), * or 0'. This transition

is denoted by (P,e) and belongs to one of the six cases described

earlier. For PEL(Y), define

M(P,P') = le on P: P' = P(e), the transition

(P,e) belongs to case 3 or 4}, (6.10)

M(P,O) je on P: the transition (P,e)

belongs to case i}, (6.11)

M(P,o') = le on P: the transition (P,e)

belongs to case 2, 5 or 61. (6.12)

Theorem 3. Under assumptions Al and A2, {Xy(t), t>O} is a CTMC

on L*(Y) with the rate matrix Q(Y) = [qy(P,P')] (P,P'cL*(Y)),

defined as follows

qy(PP') = p j(e) if P,P' £L(Y), P*P'
ecM (P, P ) 

= p i(e) if P' = *, PeL(Y)
eeM CP, 0)

= Z jU(e) if P' = *', PcL(Y) (6.13)

eEM(P, ')

- p w(e) if P' = P cL(Y)
e on P

= 0 if p = or ¢''

Proof: Follows from the construction of {Xy(t) ,t0} and the

*i. definitions of M(P,P'), M(P,€) and M(P,0'). .

...............................
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Let the paths in L(Y) be numbered 1,2, ... ,m and the states .

and o' be identified by the numbers m+1 and m+2 respectively.

Then from Theorem 2 we get

P(I(Y) - I and capacity of Y < t)

-P(I(Y) - 1 and maximum flow < t)

-P(Xy(t) = m+1 I Xy(O) = 1). (6.14) a

Thus the joint distribution of the maximum flow and the

criticality indicator of the cut Y can be obtained as the

distribution of time until absorption in the state m+1 of the

modified CTMC IXy(t) ,t>O} starting from state 1. The

uniformization technique of Section 5 can be used to compute this

distribution numerically. S

The criticality index of the cut Y is given by

R(Y) = P(Xy(t) = m+1 for some t 0 I Xy(O) = 1). (6.15)

Thus the criticality index can be computed as the probability S

that the process fXy(t), t 0}, starting in state 1, gets

absorbed in state *. The backward and forward algorithms for

doing this are described below. We write qij(Y) for qy(P,P') P

where P and P' are identified by numbers i and j respectively.

Backward Algorithm: Defi ne

Vi  = P{Xy(t) = m+1 for some t0 IXy(O) = ii, lSiam+1. (6.16) 0

Then

v. v q vj i (Y)/qi(Y) 1 <i m (6.17)
1 j>i i i

where qi(Y) - -qii(Y) and Vm+ I  1, Vm+ 2  = 0. These quantities

can be computed in a backward manner to yield R(Y) = vj.

Example. Consider network 1 and let Y be the minimal cut

Tv-,5,9I. For this case, B {1,2,3,6} and C(B,B) - {81. The

5--

. . . . . ..
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set of Y-admissible paths, L(Y), is shown in Table III. The Q(Y)

matrix is shown in Table IV. Equations (6.17) for this problem

are as follows:

V 0,
7

v 6 -1, ..

v 5  - 119 v 6/ ( P2 + P6 + P9 ) ,

S5v5 2+P5+P ,  (6.18)

v = (( 1+ 4)v 5 +P 9 v 6  )/(6 1 + P4 +P6 + U9)

v 2  - ( P5v 3 + ( P1+ P4 )v 4 )/ ( P,+ P4 + P5 + P7 ) ,

V 1 2v 2 / (P +P 3+U 7 )

Solving these in a backward fashion we get v, PIthe cut 13,5,91

is the minimum capacity cuti.

Forward Algorithm: Define

vj P{Xy(t) = j for some taO X (0)=1, 1;Sj m+1. (6.19)

Then R(Y) = v The equations for v. are given by

v =[ (qij(Y)/q (Y ))v, (6.20)vj i<j i

which can be solved in a forward manner starting with v1 = I and

computing v 2' . v + R(Y) in that order.D 2' ... m+1

J. . . . . . . ..- S- ~ ~.t. *t ,.p .. . . . . . . . . . . . . .. .. ' . . .. . . . . .
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7. Computational Results.

In this section we document the computational results using -

the networks shown in Figures 1,2,3 and 4. The networks are

assumed to satisfy assumptions Al and A2 of Section 4. The

backward algorithms developed in Sections 5 and 6 are implemented p

in Fortran 77.

Table V gives the following network size descriptors for the

four networks:

(1) Number of nodes,

(2) Number of arcs,

(3) Number of (s,t) paths, p

(4) Number of (s,t) cuts, and

(5) Value of the uniformization constant q (defined by

equation (5.9)). P

Table VI gives the mean ( ) and standard deviation (a) of

the maximum flow in the four networks. The distribution of the '

maximum flow is computed using the uniformization technique I

described in Section 5. Thus, an integer M was chosen so that a-4-

Z 1-10 - 5. The values of M and aM are also given in Table VI.

Note that one does not necessarily need larger M for larger

networks.

The cumulative distribution function F(t) is approximated by

FM(t) of equation (5.12). The distribution of the normalized P

maximum flow, i.e. (maximum flow-p)/a, is tabulated in Table VII.

An interesting feature of this table is that the distribution of

the normalized maximum flow seems to be more or less the same for P

all the four networks. No theoretical insight into this

phenomenon is eurrently available, other than the intuitive

.... ... . .k...'",. . ".-.. .. ".."."....'.'..... ......... .... .. . . ................ ''.. '. .
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feeling that for "large" networks the distribution should be

close to normal.

The conditional performance of the four networks is

tabulated in the next four tables. For each network the tables

list the following:

(1) R(Y), the probability that Y is the minimum capacity

cut ,

(2) 1 (Y), the mean of the maximum flow given that Y is the

minimum capacity cut,

(3) a(Y), the standard deviation of the maximum flow given

that Y is the minimum capacity cut.

For network 1 all minimal cuts Y and conditional performance

measures are tabulated in Table VIII. As the number of minimal

cuts in network 2, 3 and 4 is large (17, 15 and 78 respectively)

they are first ordered by decreasing criticality indices and only

first ten are tabulated in Tables IX, X and XI respectively.

Algorithm by Tsukiyama et al [1980] is used to enumerate all

minimal (s,t) cuts in a network.

The algori thms proved to be very eff icient and

computationally stable. It took about one second of CPU time to

compute the distribution of the maximum flow for each network and

less than 0.2 seconds per cut to evaluate the conditional

performance on IBM 4341 system. Using simulation to obtain

" equally accurate estimates would no doubt take considerably

* longer time.

......................... ;.'.-....-..:2 """""'"""
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8. Conclusion.

We have provided a method of computing the exact

distribution of the maximum flow in planar networks with

exponentially distributed arc capacities by constructing a

continuous time Markov chain with one absorbing state so that the

time until absorption in this state is equal to the maximum flow

from source to sink in the network. The state space of this CTMC

is shown to be the set of all paths in the network, augmented by

an absorbing state. When the paths are put in "topmost path

first" order the rate matrix of this chain becomes upper

triangular. This makes all calculations very straightforward.

Algorithms are developed to compute the distribution and moments

or the maximum flow.

Further, a modified CTMC is constructed to compute the joint

distribution of the criticality indicator of a given minimal

(s,t) cut and the maximum flow. Algorithms are developed to

compute the probability that the given cut is a minimum capacity

cut in the network.

Note that it is possible to convert a maximum flow problem

ror a planar network with exponential arc capacities into a

shortest path problem in the dual network with exponential arc

lengths and solve this shortest path problem by the method

described in Kulkarni [1984]. There are two disadvantages to

this approach. First, one has to construct the dual,

considerable extra work for large networks. Second, the state

space requirement of this equivalent shortest path problem is

almost always more than that of the path filling algorithm

=" ... .. . . .. . .. .... . . . ....... . ...."."."". ."""."".""".".""."""". . . ..".'."". .". .'.'."." "I"L ''-W.._''''l l ,L='-'I""L''''_.- _'-=_. " _.,,".=,".'."_
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described here. It is important to solve the maximum flow

problem directly since it provides many interesting algorithms

and concepts.

One major drawback of CTMC method presented here is that the

size of the state space, which is equal to the number of paths,

can grow exponentially with network size. Thus the time and

space requirements of the algorithms can increase rapidly. It

should be noted, however, that for very large networks, any other

method of analysis will also be slow.

An extension of our method to non-planar networks does not

seem possible, since the "topmost path first" order does not make

sense in non-planar networks. It seems to us that an entirely

different approach would be needed to solve the maximum flow

problem in non-planar networks.

A quantity that i. of interest in network flow analysis is

the utilization of an arc, i.e. the fraction of the capacity

utilized when the flow in the network is maximum. This and some

related quantities will be studied in a forthcoming paper.

* .*-- - .-. . .
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Table I. Paths in the Example Network in TPF Order

I Nodes visited by path I

1 1 2 45
2 1 2 4 6 5
3 1 2 3 4 5
4 1 2 3 4 65
5 1 2 3 6 5
6 1 3 4 5
7 1 3 4 6 5
8 1 3 6 5

Table II. Q-matrix for the Example Network 1.

1 2 3 4 5 6 7 8 9

1 -U(1 ) 1U7 13  0 0 0 0 0
2 0 -P(P 2 ) 0 0 U3+V8 0 V1l 0 u 9
3 0 0 -j(P 3) P17 5 +11I4 0 0 0
4 0 0 0 -i(P4) 15'8 0 1I'4 0 119

5 0 0 0 0 -1 (P5) 0 0 11W*4 + 6449
6 0 0 0 0 0 - (P6) P7 1A5 P12
7 0 0 0 0 0 0 -u (P7) 0 5 +8 P2 +V
8 0 0 0 0 0 0 0 -V (P8) 1'2+116"V9
9 0 0 0 0 0 0 0 0 0

Notation: P(Pi u(e)
e on Pi

.. . . .
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Table III. The Y-admissible Paths
in Network 1. Y -13.5,91.

i Nodes visited by path i

11 2 4 5
2 1 2 3 4 5
3 1 2 3 6 5
4i 3 4 5
5 1 3 6 5

Table IV. The Q(Y) Matrix for Network 1.
y 13,5,91

12 3 4 5 6 7
1i -1J(P 1) 113  0 0 0 0 P1'1+07
2 0 vI(P 2 ) 0J5 P 1 + 4 4 0 0 PI7
3 0 0 -P.(P 3 ) 0 IA1 IP4 )19 )A6
4 0 0 0 IAP4 5  0 P.2+II7
5 0 0 0 0 -m(P 5 ) p.q Ii2+116
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 -

Note: State 6 is the "good" absorbing state.
State 7 is the "bad" absorbing state.

.~* .. p -.. * *.- . .
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Table V. Network Size Descriptors

_ _Network 1 Network 2 Network 3 Network 4
# Nodes 6 7 7 10
# Arcs 9 11 11 25
# Paths 8 9 6 64
# Cuts 9 17 15 78

I q 5.75 6.6666 4.5 5.0277

Table VI. Mean and Std. Dev. of Maximum Flow

Network 1 Network 2 Network 3 Network 4
M 24 32 19 80
am  0.999994 0.999993 0.999990 0.999991

0.9964 1.1381 1.0236 3.9343
0 0.5760 0.6279 0.6444 1.9013

Note: mean of the maximum flow.
a std. dev. of the maximum flow.

.... .... .... .... .... .... ..... ...... .... .... .... .... .. 
-
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Table VII. P((T-w)/o:x)

x Network 1 Network 2 Network 3 Network 4
-3 0.0 0.0 0.0 0.0
-2 0.0 0.0 0.0 0.0
-1 0.1 391 0.1 421 0.1354 0. 1487
0 0.5727 0.5680 0.5788 0.5568
1 0.8502 0.8496 0.8506 0.8473
2 0.9566 0.9574 0.9554 0.9596
3 0.9887 0.9893 0.9880 0.9910

Table VIII. Conditional Performance: Network 1.

Cut # C(X, ) R(Y) (Y) o(Y)
1 3,5,6 0.2678 1.0409 0.5787
2 1, 2 0.1780 0.8949 0.5632
3 2,3,4 0.1608 1 .0461 0.5765
4 6,7,8 0.1382 1.0554 0.5785
5 7,9 0.1142 0.9056 0.5657
6 I,5,6 0.0680 0.9989 0.5683
7 3,5,9 0.0535 1.0056 0.5698
8 1,5,9 0.0136 0.9636 0.5588
9 2,14,7,8 0.0059 1.0138 0.5154

. . . . .. * .]
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Table IX. Conditional Performance: Network 2.

Cut # y c(x,3) R(Y) (Y) o(Y)
1 1,2 0.2204 0.9776 0.6049
2 8,9,11 0. 1405 1 .0833 0.6060
3 1,6,7 0.0923 1.1483 0.6263 -
4 3,9,11 0.0878 1.0833 0.6060
5 7,8,9,10 0.0798 1.3066 0.6409
6 4,6,7,8 0.0770 1.3066 0.6409
7 2,4,5,8 0.0722 1 .2394 0.6164
8 3,7,9,10 0.0499 1.3066 0.6409
9 3,4,6,7 0.0481 1.2990 0.6393

10 2,3,4,5 0.0451 1.2394 0.6164

Table X. Conditional Performance: Network 3.

Cut Y - C(XX) R(Y) P(Y) o(Y)
1 1,2 0.3051 0.9899 0.6516
2 1,6 0.1566 0.8467 0.5590
3 7,8,11 0.1045 1.0708 0.6292
4 3,8,11 0.0871 1.0708 0.6292
5 1, 1 1 0.0687 0.7289 0.4947

6 4,6,7 0.0621 1.1128 0.6337
7 6,7,8,9 0.0529 1 .3103 0.6712
8 3,6,8,9 0.0441 1.3103 0.6712
9 4,6,7 0.0211 0.9790 0.5807

10 3,4,1 1 0.0175 0.9790 0.5807

Table XI. Conditional Performance: Network 4.

Cut Y - C(X,J) R(Y) 1(Y) o(Y)
1 1,2,3 0.2819 3.5613 1.8450

2 13,19,25 0.2451 3.6926 1.8683
3 1,2,11,12 0.0649 3.9192 1 .8378
4 1,3,7,8,9 0.0470 4.4759 1.9083
5 12,13,19,22 0.0374 4.0378 1.8546
6 3,9,13,19,20 0.0373 4.2483 1.8515
7 3,.4,5,8,9 0.0330 4.4151 1.8845
8 1, 7,8,9,12 0.0289 4. 4550 1 .8916
9 2,3,4,5 0.0228 3.6346 1.7365

10 4,15,19,25 0.0226 4.1453 1 .8847

-.-I
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00.4

1.5 1.2 1.5 2.0 .-

0.6

Figure 2. The Example Network 2.

The numbers on the arcs represent mean capacities.
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1. 0. 2.

Figure 3. The Example Network 3.

The numbers on the arcs represent mean capacities,
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i 5.0

1.0 3.6 -
1.2 .

F r 3.0 1.2T E .0 .8
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1.2 8-42.4 .5 " 0
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Figure 4. The Example Network 4. "-

The numbers on the arcs represent mean capacities.
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